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J.  Phys.: Condens. Matter 2 (1990) 525-539. Printed in the UK 

Thermodynamic properties of FCC metals: Cu and A1 

M Zoli and V Bortolani 
Dipartimento di Fisica, Universita di Modena, Via Campi 213 A, 41100 Modena, Italy 

Received 23 May 1989, in final form 11 September 1989 

Abstract. Isothermal bulk modulus, linear coefficient of thermal expansion, thermodynamic 
Griineisen parameter and constant pressure specific heat have been computed for Cu and 
AI throughout a wide range of temperatures. We use a perturbative Helmholtz free energy 
as a function of the strain parameters. The Brillouin sums are carried out exactly. The 
atomic interactions are modelled according to a force constant potential: angular forces 
and long-range central forces are included in the harmonic part of the potential, while 
the anharmonic part is first-neighbours ranged. The model is shown to be successful in 
describing both the thermoelastic and the caloric properties. 

1. Introduction 

The thermodynamical properties of solids are of great importance in the study of the 
anharmonic interactions in metals. 

A fully microscopic theory of the thermoelastic properties is not yet available 
because, in order to construct the free energy, one should know the volume dependence 
of the effective interatomic potential. 

The approach which is commonly used (Born and Huang 1954), to include the 
volume dependence in the free energy, consists in straining the crystal by the method 
of homogeneous deformations and, then, expanding the nuclear displacements of 
the strained crystal in terms of the normal phonon coordinates. With this method, 
the lattice-dynamical problem is solved at a fixed volume and the explicit volume 
dependence of the potential is not required any more. The derivative of the free energy 
with respect to the strain parameters are directly related to the thermoelastic properties. 

MacDonald and MacDonald (1981) have carried out computations of thermody- 
namics in FCC metals: a Morse-like potential is adopted by these authors and the 
unknown parameters are fitted to some thermodynamical properties. 

Their approach was based on Shukla’s previous calculations (1980) of the lattice 
sums needed to obtain the Helmholtz free energy as a function of temperature and 
volume, F (  V ,  T ) .  However, this scheme is justified only in the high-temperature limit 
(T  2 OD, the Debye temperature) and for a wholly nearest-neighbour central forces 
model potential. 

In dealing with simple metals, pseudopotential theory has been used (Koehler et a1 
1970, Gillis and Koehler 1971) to determine the anharmonic interactions. In the case 
of noble metals the situation is more complex: the s 4  electron interaction gives rise 
to many-body forces and the construction of a pseudopotential is not very accurate. 
To describe, at the same time, simple and noble metals we will use a force constant 
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scheme and consider the potential as a sum of a central part and of an angular part 
related to three-body forces. 

The harmonic potential consists of long-range central forces and a nearest- 
neighbour angular force. The parameters are fitted to, within the experimental errors, 
the measured phonon frequencies (Nilsson and Rolandson 1974, Stedman and Nilsson 
1966) and second-order elastic constants. The angular part avoids the fulfilment of the 
second-order Cauchy relations. 

We will use the cubic force constants that we have derived in a previous paper (Zoli 
et al 1990) by expanding the internal energy both in terms of strain parameters and 
in terms of lattice waves. The two expansions give relations between the third-order 
elastic constants and the cubic force constants. 

In the same paper we have shown that for those metals which almost fulfil the 
third-order Cauchy relations as Cu and A1 (Hiki and Granato 1966, Thomas 1968) the 
nearest-neighbour cubic force constant gives the largest contribution to the anharmonic 
interaction responsible of the phonon linewidth. 

In this paper we also want to show that the anharmonic interactions related to 
the thermal expansion, Griineisen parameter, temperature dependence of the elastic 
constants and specific heat, are mainly determined by the nearest-neighbour cubic 
central force constant. 

A very general scheme, allowing for an explicit dependence of F ( V ,  T )  on the 
strain tensor, is adopted here (Barron and Klein 1974). The effects of deformations 
on atomic mean positions are introduced via a perturbative method, yielding a double 
power series in the interaction Hamiltonian: a purely anharmonic one (Hanh) plus a 
strain contribution ( H s ) .  

From the first and second strain derivatives of F (  V ,  T ) ,  the temperature effects 
on the isothermal second-order elastic constants are deduced, while the mixed (both 
temperature and strain) derivatives of F ( V ,  T )  are required in the evaluation of the 
coefficient of linear expansion. 

We remark that no approximation affects the thermoelastic calculations, except for 
the truncation of the series in the perturbation H,. 

Moreover, the lowest-order (third and fourth) anharmonic terms in the constant 
volume specific heat (C,) are calculated exactly, providing a good test for the fourth 
derivative of the interatomic potential. 

Since the constant pressure specific heat (C,) is the directly measured quantity, 
we compute it as a function of temperature, by adding C, and the thermoelastic 
contribution (Huang 1963). 

In section 2 we outline the theory we liave used for the perturbation free energy; in 
section 3 the results are reported for both metals and comparisons with experimental 
data are discussed; in section 4 the conclusions are drawn. 

2. Free energy 

The Helmholtz free energy F ( V ,  T )  of a crystal can be decomposed into the harmonic 
contribution F,,(V, T )  plus the perturbation term F ,  ( V ,  T ) .  

According to the linked-cluster theorem (Mahan 1981): 

z 
F ,  = - p P  U ,  

l = I  
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where p is the inverse temperature and 

In equation ( 2 ) ,  the usual quantum theory symbols are adopted: T, is the time ordering 
operator; f i ( z , )  is the perturbation in the interaction representation; (. . denotes 
that quantum averages are made on the unperturbed eigenstates and only connected 
diagrams must be retained. Thermal averages are obviously implied by the formalism. 
In equation ( l ) ,  terms are retained up to the second order (1  = 2 ) .  

If an homogeneous deformation is applied to the crystal, the Cartesian component 
of the displacement field can be written in terms of the normal coordinates as (Barron 
and Klein 1974) 

where uTIj is the strain-rotation tensor, R ( L )  denotes the lattice site in the undeformed 
state, A q j  is the mode normal coordinate, 

112 
T,(L; q j )  = (=) * exp(iq. R ( L ) )  m (4) 

In equation (4), M and N are atomic mass and number of atoms of the crystal, 
respectively; the eigenstates e(q j )  and the eigenvalues o ( q j )  are computed within the 
usual force constant harmonic model. 

The effects of strain on the harmonic Hamiltonian yield the relations (which are 
reported in Appendix 1) between second-order elastic constants and harmonic force 
constants. Then, equation (3) is substituted into the third- and fourth-order anharmonic 
Hamiltonian, and the following expression is derived for the perturbation U: 

where i j  E (q j j j ) ,  Y‘3)  and V‘4) are the Fourier transform of the third and fourth-order 
atomic force constants, respectively; moreover: 
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with 

In equations (7),  R(L,  L’) R ( L )  - R(L’) whereas q5,76 (L,  L’) and 4,,.6,(L, L’) are the 
third- and fourth-order force constant tensors, respectively. In equation (6), static lattice 
terms are omitted since they do not have any effect on thermal properties; moreover, 
the second-order truncation of the normal coordinate power series (consistent with 
equation (5)) allows a description of the main effects of deformation. 

Once the perturbation given by equation (5) is inserted in equation (2), one gets 
from equation (1) to the second order: 

From equation (8), the temperature dependence of the thermoelastic quantities will be 
easily derived in the next section. 

3. Results and discussion 

We denote by qZij the strain tensor that vanishes for pure rotations; the uZB (strain- 
rotation) derivatives, as obtained from equation (8), have to be converted into qZB 
strain derivatives in order to define physical quantities. The relations between the q z p  
derivatives and the urB derivatives are 
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We have calculated the temperature dependence of the following quantities. 
( 1 )  The stress tensor 

I/ is the crystal volume in the undeformed state. 
(2) The isothermal second-order elastic constants C&,,BI 

(3) The linear coefficient of thermal expansion x 

where the Voigt notation is used for the elastic compliances S$xJIjJ.  

monic approximation by 
(4) The thermodynamic Griineisen parameter yid, which is given in the quasihar- 

where y ( q j )  is the microscopic Griineisen parameter and Cb(q j) is the (q j)-mode 
contribution to the harmonic constant volume specific heat CF,. 

(5) The constant pressure specific heat C, 

where C y h  is the constant volume anharmonic specific heat and B ,  is the isothermal 
bulk modulus. 

The lowest-order diagrams that contribute to the stress tensor and to the elastic 
constants are shown in figures 1 and 2, respectively. Their analytic expressions are 
reported in Appendix 2. Note that, according to equations (10)-(12), the stress 
tensor diagram has also to be considered in the evaluation of the second-order elastic 
constants. Higher-order diagrams, which involve Hdnh in equation (9), have been 
taken into account but their contribution to the thermoelastic properties was found 
to be smaller by three orders of magnitude, at high temperatures; (moreover the 
computation of higher-order diagrams is time consuming since double Brillouin zone 
sums are implied by the fourth-order anharmonic term). 

- - - - -  9 
Figure 1. First-order diagram (Dl)  contributing to the stress tensor. The broken line is 
associated with the strain coefficient V.8; the full line denotes the phonon loop. 
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Figure 2. ( a )  First-order diagram ( D 2 )  contributing to the second-order elastic constants: 
the broken line is associated with the strain coefficient V.ay ,p~.  ( b )  second-order diagram 
(03)  contributing to the second-order elastic constants: the broken lines denote the strain 
coefficients V.p and VT#p#. 

Therefore, our thermoelastic properties calculation is carried out within the quasi- 
harmonic approximation. To evaluate the diagram in figure 1 (01) and the second-order 
diagram in figure 2 (03)  one has to know the third-order force constant. Since we use 
a first-neighbours central forces anharmonic model potential, the cubic force constant 
( Y , )  can be determined by knowledge of the experimental second and third-order 
elastic constants (along the path detailed by Zoli et a/ 1990). The equation we use to 
evaluate Y,  is reported in Appendix 1. 

In the evaluation of the first-order diagram in figure 2 (02)  one needs the fourth- 
order force constant (Q1). 

Fourth-order effects are important in the temperature derivatives of the bulk 
modulus and in the strain derivatives of the Gruneisen parameters (3  In y / a  In V ) ,  
(Hiki et a1 1967). We have derived an  equation between Q, and (Zlny/dln V ) T ,  being 
this quantity known from the experiments (Hiki et al 1967, Wallace 1972). 

Table 1. Experimental values for the strain logarithmic derivative of Griineisen parameters. 
a :  see Hiki et a/ (1967); b: see Wallace (1972). The first-neighbours fourth-order force 
constants are obtained by equation (A3.8). The units are (10l2 Dyn cm-2). 

Cu AI 

(Sln ;8 /21n  V ) r  1.2a 1.3b 
Q i l a  93.8 61.0 

The procedure is outlined in Appendix 3, whereas the experimental values of 
(2 In y / ?  In V ) ,  and the corresponding values of Q, are given in table 1. In tables 2 
and 3 the contributions to Cl'; from the three leading diagrams are listed, at  some 
selected temperatures, for Cu and Al, respectively: 0 3  turns out to be predominant 
throughout the whole range of temperatures, its effect being only partly cancelled by 
0 2  and 01 accounts for the linear decreasing of Cl'; with temperature observed. One 
might comment analogously about C& and CA. 

In figures 3 and 4 the isothermal bulk modulus is reported as a function of 
temperature for Cu and Al, respectively; the coefficient of linear expansion as a 
function of temperature is shown in figures 5 and 6 for Cu and Al, respectively. 

The overall agreement with experiment is quite satisfactory, in spite of some 
discrepancies that affect !I for A1 near the melting temperature. 

ytd has been calculated from equation (14), after relating the mode dependent 
Griineisen parameter to the third-order force constant via equation (A2.3) ; table 4 
shows that our results are quite close to the available experimental data (Hiki et a1 
1967, Gupta 1983). 
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Table 2. Copper: contributions to CL from the leading diagrams, as a function of 
temperature. The units are ( lo1* Dyn cm-*). 

Temp. (K) D1 D2 0 3  

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

-0.01 1 
-0.01 6 
-0.023 
-0.029 
-0.036 
-0.043 
-0.050 
-0.057 
-0.065 
-0.072 

0.028 
0.041 
0.058 
0.075 
0.092 
0.109 
0.127 
0.145 
0.163 
0.181 

-0.043 
-0.083 
-0.124 
-0.165 
-0.206 
-0.247 
-0.288 
-0.330 
-0.371 
-0.412 

Table 3. Aluminum: contributions to CT from the leading diagrams, as a function of 
temperature. The units are ( l o L 2  Dyn cm- 1 ). 

Temp. (K) D1 0 2  0 3  

100 
200 
300 
400 
500 
600 
700 
800 
900 

-0.010 
-0.014 
-0.0 19 
-0.024 
-0.030 
-0.035 
-0.041 
-0.047 
-0.053 

0.027 
0.037 
0.050 
0.063 
0.078 
0.092 
0.107 
0.122 
0.137 

-0.043 
-0.079 
-0.117 

-0.196 
-0.156 

-0.235 
-0.274 
-0.3 13 
-0.352 

T ( K l  
Figure 3. Isothermal bulk modulus plotted against temperature in copper. 0, our calcula- 
tion; S, Overton and Gaffney (1955); 0, Chang and Himmel (1966). 

The complete relationships between microscopic Gruneisen parameters and the 
third-order force constants are reported elsewhere (Zoli 1989); here, we only point out 
that such equations provide an independent determination of Y, ,  being the y(q j )  that 
are experimentally known at some high symmetry points: the Y ,  obtained have been 
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1 I 

0 200 400 600 800 1000 

T (K1 

Figure 4. Isothermal bulk modulus against temperature in aluminium. 0 ,  our calculation; 
2, Kamm and Alers (1964); 4 Sutton (1953). 

- 2 5 . 0  
7 7  x 

T i K 1  

Figure 5. Coefficient of linear expansion plotted against temperature in copper. 0 ,  our 
calculation; 2, Hahn (1970) 

found to agree with the values given by equation (A1.3), both for Cu and Al. 
In order to evaluate the constant-volume anharmonic specific heat Cyh, the per- 

turbation U in equation (5) is identified with the anharmonic Hamiltonian Hanh and 
the strain Hamiltonian H, is dropped. Once Hanh has been inserted in equation 
( 2 ) ,  the purely anharmonic free energy Ffnh is obtained from equation (1). Since 
Cyh = -T (d2F,anh/?T2), the temperature dependence of Cyh  can be easily estab- 
lished. The lowest-order diagrams which contribute to Cyh  are shown in figure 7 ;  their 
analytic expressions have been published frequently (see Leibfried and Ludwig 1961) 
and are not repeated here. The two anharmonic terms in the constant volume specific 
heat have been computed by using 2024 points over the entire Brillouin zone. The 
estimated error in the integration is on the order of 2%. Double Brillouin zone sums 
are necessary to evaluate the diagram in figure 7 ( a ) .  The two anharmonic contribu- 
tions essentially balance each other in the whole range of temperatures, so that explicit 
anharmonic effects in C, are provided only by the dilation term (last addendum in 
equation (1 5)). 

In figures 8 and 9, the theoretical results are seen to fit the experimental data, both 
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0 200 400 600 

T I K )  

7-- 7 - -  

8 00 1001 

Figure 6. Coefficient of linear expansion plotted against temperature in aluminium. 0, our 
calculation; '2, Touloukian et a/ (1970). 

Table 4. Thermodynamic Griineisen parameters of Cu and AI, at some temperatures 

Copper 100 1.983 1.994 
300 2.019 2.0 
700 2.023 2.021 

Aluminium 100 2.287 2.2 
300 2.312 2.2 
900 2.316 2.281 

Figure 7. (a)  First-order diagram contributing to C;Fh: ( b )  second-order diagram con- 
tributing to C y h .  

for Cu and Al. We found that the C, slopes, at high temperatures, is very sensitive to 
the fourth-order force constant. Therefore these calculations furnish an independent 
check on the reliability of the Q1 values which we have derived through equation 
(A3.8). 

We also remark that the two lower-order anharmonic terms in Cyh  are opposite in 
sign. According to our calculations, Cyh  turns out to be slightly negative up to 400 K 
in the case of aluminium and even further (up to 600 K )  in the case of copper. At 
room temperature we have calculated : 

Cyh  = -0.46 J K-' mol-' (aluminium) 

Cyh  = -0.44 J K-' mol-' (copper). 
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0 200 
7- 

400 600 
' 
800 1000 

T i K )  

Figure 8. Constant pressure specific heat plotted against temperature in copper; 0, our 
calculation ( C p ) ;  C, Martin (1960); 4 Pawel and Stausburg (1965); our calculation (C,h). 

".r o; , , , , , , ~ 

+ 
C 

+ VI 

400 600 800 1000 
7- 5 5  

U 200 0 

T IK) 

Figure 9. Constant pressure specific heat plotted against temperature in aluminium; 0, our 
calculation ( C p ) ;  S, Touloukian et a/ (1970); 4 our calculation (C,h). 

Experimental inquiries about the excess heat capacity due to anharmonic lattice vi- 
brations are known to be very delicate. Recently, Martin (1987a, b) has carried out 
accurate specific heat measurements on noble metals, below room temperature; from 
the results obtainedthe Debye temperature was seen to be a slightly increasing function 
of temperature, suggesting that negative values of Cyh  are to be expected; such a 
tendency, present in copper, should be even more evident on silver and gold. Similar 
speculations have been proposed by Rosen and Grimvall (1983) and by Cordoba and 
Brooks (1971). 

As for aluminium, our result is in good agreement with previous evaluation by 
Leadbetter (1968) at room temperature, although, unlike that which was found by 
Leadbetter (1968), our values of Cyh  fast become positive above 400 K. Therefore, our 
calculation would better agree with the Cyh  slope obtained by Brooks and Bingham 
(1968). 
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4. Conclusions 

Thermoelastic and caloric properties of Cu and A1 have been computed over a wide 
range of temperatures. Both the microscopic effects of deformations and the pure 
anharmonic interactions have been included in the Helmholtz free energy. By applying 
the second-order perturbative method, the temperature dependence of the physical 
quantities has been derived. In order to reproduce accurately the experimental phonon 
frequencies and polarisation vectors, the harmonic part of the interactions has been 
modelled with long-range central forces and nearest-neighbours angular forces. The 
sums, which appear in equations (A2.1), (A2.4), (A2.5) and in the analytic expressions 
of the diagrams in figure 7, have been carried out exactly over the first Brillouin zone; 
as already pointed out by Shukla (1980) this is a crucial point in the evaluation of 
the thermodynamical quantities. We remark that a correct handling of the (q j)-mode 
contributions enables a computation of thermodynamical properties even below the 
Debye temperature, which may be of particular interest in the case of the thermal 
expansion. 

We have shown that the thermoelastic properties are mainly determined by the 
nearest-neighbours cubic central force constant : the use of a short-ranged central cubic 
potential suffices in fitting the experimental data over a wide range of temperatures. 

The overall success of our calculations suggests that many body effects are scarcely 
relevant in the anharmonic tail of the potential in the case of both Cu and Al. It is 
interesting that the coefficient of linear expansion can be well reproduced by a cubic 
force constant derived through third-order elastic constant data; a further convincing 
check is furnished by the thermodynamic Gruneisen parameter. 

In calculations of the constant volume specific heat, the quartic anharmonic Hamil- 
tonian has to be taken into account, since it  contributes to the first perturbative order 
in the S-matrix expansion. We have derived an equation (see equation (A3.8)) which 
relates the fourth-order force constant to the lower-order force constants and to the 
strain derivative of the Gruneisen parameter. The fourth-order anharmonic term turns 
out to be responsible for a slightly negative contribution to the specific heat which 
has been experimentally observed, both in Cu and Al, below room temperature. At 
high temperatures, anharmonic effects in the constant pressure specific heat are mainly 
provided by the dilation term (last addendum in equation (15)). However, we believe 
that the whole matter of anharmonic lattice vibrations contributions merits further 
investigation: we plan to carry out exact calculations for silver and gold, to investigate 
the effects of many-body forces. We stress that the input parameters 6, and Bk are 
crucial to our evaluation of CFh, so that further experimental studies, mostly on the 
isothermal pressure derivative of the isothermal bulk modulus (i?B,/dP),, would be 
worthwhile for noble metals. 

Appendix 1 

The second-order elastic constants as functions of the harmonic force constants are 
here reported. We define : 

(Al . l )  

where a is the lattice constant; i indexes the neighbour shell; q$(ri) is the pairwise 
potential; W(cosBJRL)  is the three-body potential, ( J k L )  labelling the tern of atoms. 
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Since we consider first-neighbours angular forces, it follows that (i) J and L are 
nearest-neighbours of K ;  (ii) J and L have to be nearest neighbours of each other. 

Then, in a first through sixth central forces plus first-neighbours angular forces 
model potential, one gets: 

a . C 1 ,  =2(P , -  31 )  +4(P,-a2) + 12(P, -%3)  +8(b4-a4)  f Y(b5-'5) + Y(p6 - '6)  + l2'I 

a .  c,, = ( P I  - a , )  + w 3  - 3 3 )  + 4(P4 - SI 4 ) + y ( B s  - ' 5 )  + Y ( P 6  -36) -66, 

a . c4, = a . c,, + 186,. (A1.2) 

The force constants are obtained by a least-squares fit of the experimental phonon 
frequencies and second-order elastic constants at 80 K. 

From Zoli e t  a1 (1990), the cubic anharmonic force constant (Yl = r ,  . @ " ( r , ) )  as a 
function of second- and third-order elastic constants is 

The Voigt notation is adopted for the elastic constants. 

Appendix 2 

The diagram in figure 1 contributes to the stress tensor with 

v . o Z i l ( ~ )  = 1 V,,j(qj;-qj)(2nqj + 1). (A2.1) 
4J 

VXij(q j ;  - q j )  is given in equation ( 7 ) ;  nq j  is the Bose-Einstein factor; V is the volume 
in the undeformed state. In a quasiharmonic approximation, the stress tensor is related 
to the mode Gruneisen tensor y,,](q j )  as follows: 

Then, from equations (A2.1), (A2.2), one gets 

(A2.2) 

(A2.3) 

which allows us to obtain the mode Gruneisen parameter y(q j )  ( y ( q  j )  = E:=, yz,(q j ) )  
as a function of the third-order force constant. 

Equations (8) and (9) yield two second-order contributions to the stress tensor: 
the first is associated with the V(3)  coefficient and vanishes for monoatomic lattices; 
the second, which depends on the V(,) coefficient, is negligible. From equation (A2.1), 
the stress tensor temperature derivatives, which appears in equation ( 1  3), can be easily 
derived. 

The first-order diagram in figure 2 gives: 

(A2.4) 



Thermodynamic properties of Cu and A1 537 

with VzPzJP8(q j ;  -q j )  detailed in equation (7). 
The second-order diagram in figure 2 contributes with 

(A2.5) 

where oi w(qj i )  and ni 3 n(wi).  

Appendix 3 

The microscopic Gruneisen parameter can be written as (Leibfried and Ludwig 1961) : 

(A3.1) 

We assume the ‘Gruneisen approximation’ (Davies 1973), according to which the (qj j -  
mode dependence is dropped in y ( q j ,  q ) ,  hence ~ ( y l )  is identified with the thermodynamic 
Gruneisen parameter appearing in the Mie-Gruneisen equation of state. 

Although such an approximation is generally quite crude (Cantrell 1980, Prasad 
and Srivastava 1978, Wallace 1970) it might hold better at high temperatures, where 
all modes are excited. Since fourth-order effects are important at high temperatures, 
we hope not to affect the value of the fourth-order force constant greatly by assuming 
the ‘Gruneisen approximation’. 

Then, from equation (A3.1) one gets 

where the spectral average Q 2  is given by 

(A3.2) 

(A3.3) 

In equation (A3.3), 4zx is the second-order force constant tensor in the deformed state. 
For small strains u I B ,  4%. can be expanded about the minimum of the potential energy 
in the undeformed state, so that equation (A3.3) yields 

(A3.4) 
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with 

(A3.5) 

h,,j: = (P,,/~:.(J)R/I(J)R,.(J) 
J 

In equation (A3.5), 4y,8(J) and q5y,8,.(J) are the third- and fourth-order force constants 
tensors; for symbols occurring in f,, see Appendix 1. 

Since i?w2/dqz, dfi2/2u,,, from equations (A3.2), (A3.4) one easily gets 

where 

(A3.6) 

(A3.7) 

Ni is the number of atoms in the i-neighbour shell; Q,  

and (A3.7): 

r :  @"'(r , ) .  
Converting the strain derivative to the volume derivative, from equations (A3.6) 

According to thermodynamics (Bassett et al 1968) : 

(A3.8) 

(A3.9) 

with 

Constant volume specific heat is customarily assumed independent of volume at 
high temperatures (Christian 1981), so that the last term in equation (A3.9) can be 
dropped. Since 6, and B; are measurable quantities, by insertion of equation (A3.9) 
in equation (A3.8) one is led to evaluate the fourth-order derivative of the interatomic 
potential. 
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